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ABSTRACT

Biodegradation of Lignocellulosic wastes (cotton stalks and corn cobs)
was carried out by single and mixed cultures of Trichoderma viride T3 and
three strains of Aspergillus niger with code A2, A4 and An2. Results
indicated that biodegradation of cotton stalks and corn cobs by mixed culture
gave higher activities for cellulase production and saccarification than single
cultures. Mixed culture of Trichoderma viride T3 and Aspergillus niger A4
gave the highest activity of cellulase being 1.02 & 0.94 U/ml with 49.7 &
45.8 % of saccarification on media containing alkaline corn cobs and cotton
stalks, respectively. It was observed that the ability of the mixed for
degrading corn cobs was more efficient than degrading cotton stalks which
increased about 1.08 fold of cellulase activity and saccharification. The
biological and enzyme parameters of co-culture on alkaline corn cobs were
calculated, which recorded 56.73 % of vyield factor, 85.59 % of sugar
utilization efficiency, 16.60 % of effective yield, 32.55 % enzyme Yyield,
37.60 % conversion coefficient with productivity of 0.15 U/ml/d.

Keywords: Cellulase activity, Lignocellulosic materials, saccharification,
Aspergillus niger, Trichoderma viride.
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INTRODUCTION

In Egypt, crop residues are byproducts of common crops such as cotton,
wheat, maize and rice, with total amount of about 16 million tons of dry
matter per year. Cotton crop area accounts for about 5% of the cultivated area
in Egypt (El Saeidy, 2004).

Cotton stalks produced annually as agricultural residues reached 1.9
million tons (Mona, et al., 2001). These post-harvest byproduct cause many
severe problems, fires causing significant environmental and health disorders
(Fouad et al., 2010).

As a renewable raw material, corncobs is considered a potential
feedstock for the production of biogas, biodiesel and bioethanol to fulfil the
increasing demand for biofuels (loannidou et al., 2009). The hydrolysates of
corncobs are therefore perfectly suited for biodiesel production using yeasts.
These species of oil-producing yeasts accumulate up to 50% of fat in their dry
mass (Kitcha and Cheirsilp, 2011).

Corncobs are a lignocellulosic material composed of cellulose,
hemicellulose and lignin. These polymeric fibers consist of monomeric
molecules. Cellulose is built of C6 sugars; hemicellulose mainly of the C5
sugars (xylose and arabinose). Lignin consists of phenolic macromolecules
(Pointner et al., 2014).

Pretreatment aims to decrease crystallinity of cellulose, increase biomass
surface area, remove hemicellulose, and break lignin seal. Pretreatment

makes cellulose more accessible to enzymes so that conversion of
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carbohydrate polymers into fermentable sugars can be achieved more rapidly
and with more yields (McMillan et al., 1994).

The major methods include pretreatment by milling (Delgenés et al.,
2002), acid hydrolysis (Taherzadeh and Karimi, 2007), steam explosion
(Mukhopadhyay and Fangueiro, 2009), hot water (Liu and Wyman, 2005) and
alkaline hydrolysis (Goswami et al., 2009 and Binod et al., 2010). Usually
grinding and milling are the initial steps of pretreatment of any biomass
which reduces the particle size, though the combination of grinding with
other pretreatment method. Superfine grinding of steam exploded biomass
has been proved better than ground residue when hydrolyzed though energy
required for the process also has to be considered while going for commercial
applications (Zhu et al., 2006).

There is a large number of fungi play a vital role to degrade these wastes
contain cellulose into sugar such as Trichoderma aureoviride, T.ressi,
T.koningii BTS120 and Aspergillus sp. (Bahaa et al., 2011; Fang and Xia,
2013 and Rana et al., 2014).

The aim of the work was to investigate the saccharification of
lignocellulosic materials (cotton stalks and corn cobs) into sugar by fungal

cultures. The biological parameters of the tested fungi were also elucidated.

MATERIAL AND METHODS
Fungi used: Three isolates of Aspergillus sp. and one isolate of Trichoderma
sp. used in this study, as cellulytic fungi, were obtained from Microbiology

Department, Fac. of Agric., Ain Shams University, Cairo, Egypt.
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Media used:
Medium (1), Potato dextrose agar (PDA), was used for maintenance and
preservation of the tested fungi, described by (Difco Manual, 1984). The
same medium was used without agar as broth medium.
Medium (2), Basal medium (Mandels et al., 1969). It was used to study
cellulase activity and saccharification determination. Its composition was as
follows (g/L): Urea, 0.3; (NH,4).SO4 1.4; KH,PO, 2; CaCl,, 0.3; MgSO,4, 0.3;
Yeast extract, 0.25; Peptone, 0.75; Trace elements (mg/L): FeSO,.7H,0, 5;
COCly, 20; MnSQ4 1.6 and ZnSQ4 1.4 then adjusted pH to 7.0.
These media were autoclaved at 121°C for 15 min.
Buffers and solutions
- Citrate buffer (0.05M) consists of : Solution (a) 0.05 M citric acid (10.51
g/L) and solution (b) 0.05 M trisodium citrate (14.71 g/L), adjusted pH to
4.8 by adding 667 ml solution (a) to 1 liter of solution (b) (Mandels et al.,
1969).
- Carboxymethlycellulase (CMC) solution 1% (Mandels et al., 1969). Its
composition was as follows: CMC 10 g/L and adjusted pH to 4.8.
Lignocellulosic agricultural wastes: Agricultural wastes (cotton stalks and
corn cobs) were collected from Kafr EI-Dawar, EI-Bahera Governorate.
Cotton stalks and corn cobs were used as samples of agriculture wastes,
which harvested from field, and solid biomass was washed with tap water
until clean, then dried at 80°C overnight (Yonghao et al., 2016). The dried
biomass was milled, as mechanical pretreatment (MT1), then using different

pretreatments, being thermal pretreatment (TT2) by heating at 121°C/1h and
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physiochemical pretreatment by acid (AT3) was carried out using H,SO,4 10%
/1h (Noriko et al., 2005) or alkaline (KT4) was done with NaOH at
concentrations of 10 % for 1h (Singh et al., 2011).

The pretreated biomass were filtered with two layers of muslin cloth, and
washed with distilled water. Then, biomass was dried at 50+2°C and
subsequently used for enzymatic hydrolysis experiments.

Maintenance of cultures: Stocks culture slants were grown on PDA medium
at 30°C for 3-5 days and maintained at 5°C.

Standard inoculants: The tested fungal isolates grown on PDA slants for 3
days at 30°C and were used to prepare the spore suspensions by adding 10 ml
of sterile saline solution (0.95 % NaCl) water to each fungal agar slant and
gently scraping with sterile inoculation loop. The obtained spore suspensions
(1x10*°/ml) were used as fungal standard inoculants for flasks experiments.
Submerged fermentation process for saccharification (cellulase
production): It was carried out in 250 ml plugged Erlenmeyer flasks
containing 100 ml of basal medium supplemented with 1% (w/v) pretreated
agricultural waste samples and then inoculated with 5% (v/v) of standard
inoculants of the tested fungal isolates. The inoculated flasks were incubated
at 30°C on a rotary shaker at 100 rpm / min for 7 days.

The fermented medium was filtrated through whatman No.1 filter paper
to separate mycelial mat to determine the cell dry weight. The culture filtrate
was used to determine enzyme activity, extracellular consumed sugar. Some

biological parameters were calculated (Diener et al., 2004).
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Identification of pioneer tested fungal isolates: The most efficient fungal
isolates for saccharification were identified based on the morphological
appearance under light microscope (shape and conidia) and cultural
characteristics according to Barnett and Hunter (1998).

Analytical procedures

Fungal count: The number of fungal spores was counted in the filtrate using

haemocytometer slide (Kolmer et al., 1959). Fungal dry weight was
determined by separate the mycelium from broth culture using filter paper
(Whatman No.1) and drying at 80°C to constant weight.

Dry cell mass_determination (Srilekha et al., 2011):For dry cell mass

determination, 10 ml of culture samples were filtered, washed and dried to a
constant mass at 104°C.

pH determination: pH of culture was measured using pH-meter model

(Microprocessor 211) equipped with glass electrode.

Reducing sugar_determination: Glucose was determined using glucose
oxidase peroxidase Kkits (GOD-POD. Liquid) from EL NASER
PHARMACEUTICAL CHEMICALS CO. (Egypt) using spectrophotometer
(JENWAY 6300) and measured at 546 nm (Kaplan et al., 2001).

Enzyme assay: Carboxymethyl-cellulase (CMCase) activity was assayed

using a method suggested by Mandels et al. (1962). The activity was
estimated using 1 % solution of carboxymethlycellulase (CMC) in 0.05 M
citrate buffer (pH 4.8) as a substrate. The reaction mixture contained 1 ml
citrate buffer, 0.5 ml of substrate solution and 0.5 ml of suitably diluted

enzyme solution. The reaction was carried out at 50°C for 30 min. The
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amount of reducing sugar released in the hydrolysis was measured. One unit
of CMCase activity was expressed as 1 p mol of glucose liberated per ml
enzyme per minute.

Parameters calculation:

Yield factor (Y) (Herbert et al., 1971) = ((Growth (dry weight) / Consumed
sugar)) x 100

Enzyme Yield (EY) (Ramadan et al., 1985) = ((Enzyme activity (U/ml) /
Original sugar (gI™)) x 100

Effective Yield (YE) = ((Fungal biomass) / (Initial substrate concentration))
x 100

Substrate Utilization Efficiency (SUE) = ((Effective yield (YE) / Yield
factor (Y)) x 100

Sugar utilization efficiency (Ramadan et al., 1985) = (Consumed sugar /
Initial sugar)

Productivity (P) (Lee et al., 1996) = ((Enzyme activity (Uml™?) /
Fermentation time (h))

Conversion coefficient (CC) = ((Enzyme activity (Uml™) / Utilized sugar
(g1™)) x 100

Saccharification Conversion (SC) (Velayudhan et al., 2104) = ((Enzyme
activity mg/ml) x 0.9) / (Initial Substrate concentration)) x 100

Statistical experimental analysis: The collected data were statistically
analyzed using IBM® SPSS® Statistics software (2011). The correlation

coefficient was analyzed using Microsoft Office Excel 2013.

Vol. 41, No.2, March, 2018 73



J. Environ. Sci.
Institute of Environmental Studies and Research — Ain Shams University

RESULTS AND DISCUSSION
Collection and identification of fungal isolates:

In the present study, 4 fungal isolates were collected from Microbiology
Dept., Fac. of Agric., Ain shams Univ. They were used as cellulase
producers. These isolates belong to Trichoderma sp. with code T3 and
Aspergillus sp. with codes A2, A4 and An2.

These fungal isolates were identified depending on their cultural and
morphological characteristic. Trichoderma sp. T3 isolate was classified as
Trichoderma viride, which giving colonies on PDA agar with broadly
spreading, hyaline with fruiting areas appeared as tufts, white at first and
becoming in deep green shades with colorless reverse. Conidiophores arised
as branches of mycelium, dichotomously branched, occasionally forming
whorls (Fig. 1d).

Whereas, all Aspergillus sp. isolates with codes A2, A4 and An2 were
identified as Aspergillus niger, which giving colonies on PDA agar medium
rapidly growing with abundant submerged mycelium. Reverse usually
without color. Conidiophores mostly arise directly from substratum, conidial
heads fuscous, blackish brown, small, most columnar masses of a few
conidial chains (Fig. 1la-c).

Among the filamentous fungi of environmental importance are
Trichoderma sp. and Aspergillus sp., their hydrolytic efficiency is as a result
of secretion of extracellular enzymes such as cellulases, hemicellulases and

ligninases. Of these, cellulase is the most important and a complex enzyme
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that acts synergistically though often described as contrasting faces of a single
enzymatic capability (Milala et al., 2014).

Pretreatment makes cellulose more accessible to enzymes so that
conversion of carbohydrate polymers into fermentable sugars can be achieved
more rapidly and with more yields (McMillan et al., 1994).

Therefore, an experiment was carried out to investigate the effect of four
different pretreatments of agricultural wastes (cotton stalks and corn cobs) on
saccharification and cellulase production by single and mixed fungi (Tables
1-2). It was found that lignocellulosic wastes were more biodegradable by
mixed fungal cultures (Trichoderma viride T3 & Aspergillus niger AZ2;
Trichoderma viride T3 & Aspergillus niger A4 or Trichoderma viride T3 &
Aspergillus niger An2) than single culture (Trichoderma viride T3,
Aspergillus niger A2, Aspergillus niger A4 or Aspergillus niger An2), it
could be due to produce a large and more efficient enzymes necessary to
breakdown hemicelluloses and cellulose (Nigam et al., 2009).

Results demonstrated that the co-culture of Trichoderma viride T3 &
Aspergillus niger A2, Trichoderma viride T3 & Aspergillus niger A4 or
Trichoderma viride T3 & Aspergillus niger An2 achieved the highest
degradation significant effect of pretreatments cotton stalks and corn cobs,
which gave the maximum yield of biomass ranged from 0.90 — 1.39 ¢/L and
1.00 — 1.66 g/L, sugar consumption between 2.38- 2.64 g/L and 2.72 — 2.97
g/L and cellulase activity ranged from 0.67 — 0.94 U/ml and 0.70 — 1.02 U/ml
with % of saccharification ranged from %, 32.5 — 45.8 % and 34.1 — 49.7 %,

respectivly
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Furthermore, results indicated that the highest biodegradation
(saccharification, biomass and enzyme activity) were achieved by the tested
fungi when propagated on wastes after pretreatment with physicochemical by 10
% NaOH (KT4 treatment) followed by 10 % H,SO, (AT3 treatment), then
physical treatment with heat at 121°C (TT2 treatment) and milling (MT1
treatment). So, it was observed that physicochemical pretreatment of cotton
stalks and corn cobs with 10 % NaOH was the best one for biomass production
being ranged from 1.28 - 1.39 ¢/L and 1.37 - 1.66 g/L with saccharification
ranged from 41.7 - 45.8 % and 41.8 - 49.7 % and enzyme activity ranged from
0.86 - 0.94 U/ml and 0.86 - 1.02 U/ml, respectively.

The co-culture of T. viride T3 and A. niger A4 gave the maximum
saccharification (45.8 and 49.7 %), biomass (1.39 and 1.66 g/L) and enzyme
activity (0.94 and 1.02 U/ml) on media supplemented with alkaline
pretreatment of cotton stalks and corn cobs, respectively.

Moreover, it was observed that the saccharification and enzyme activity
by mixed fungi T. viride T3 & A. niger A4 on alkaline wastes of cotton stalks
and corn cobs were high significant at p< 0.05 and increased about ~ 1.2 folds
as compared to single fungal culture of T. viride T3 or A. niger A4,
respectively.

The biological activity of the tested fungi (single and mixed) were
calculated and illustrated by Figs. (2-3). The highest figures of all calculated
parameters of yield factor, effective yield, substrate utilization efficiency,
sugar utilization efficiency, conversion coefficient, enzyme vyield and

productivity were recorded by co-culture of T. viride T3 & A. niger A4 on all

Vol. 41, No.2, March, 2018 77



J. Environ. Sci.
Institute of Environmental Studies and Research — Ain Shams University

pretreatments lignocelluloses waste as compared with another the tested
fungi.

The maximum parameters were obtained by T. viride T3 & A. niger A4
on alkaline pretreatment (KT4 treatment) of cotton stalks and corn cobs being
55.19 and 56.73 % of yield factor, 13.85 and 16.60 % of effective yield and
84.08, 85.59 % of sugar utilization efficiency and 26.4, 29.7 % of substrate
utilization efficiency, respectively. Moreover, the highest productivity and
enzyme yield were 0.14 and 0.15 U/ml/d, 30.06 and 32.55 % with conversion
coefficient being 34.93 and 37.60 % on cotton stalks and corn cobs,
respectively.

The main effect of sodium hydroxide pretreatment on lignocellulosic
biomass is delignification by breaking the ester bonds cross-linking lignin and
xylan, thus increasing the porosity of biomass (Tarkov and Feist, 1969).

Results in Table (3), confirmed that mixed cultures of T. viride T3 & A.
niger A4 breakdown alkaline corn cobs with high efficiency than alkaline
cotton stalks which gave a high values of biomass (1.66 g/L), enzyme activity
(1.02 U/ml) and % saccharification (49.7%). From statistically analysis, it
was observed a high positive correlation coefficient (r) between biomass and
each of saccharification and cellulase production by selected mixed culture of
T. viride T3 & A. niger A4 on alkaline pretreatment of cotton stalks and corn

cobs ranged from 0.92 — 0.93 and 0.88 — 0.89, respectively.
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Table (1): Physicochemical pretreatments of cotton stalks for biomass,
consumed sugar and cellulase production by single and mixed

fungi using flasks as a batch culture at 30°C for 7 days.

Tested fungi

@ Single Mixture

:

= < N o -
I} < o~ (o} < < < <
5 Parameters ikt I < = 3 3 3 g

|— ~ =
C.D.W(g/L) 0.61 | 0.69 065 | 066 [ 1.15 | 1.1 1.0 | 0.83¢

Saccharification (%) 2842 | 34.1 304 | 301 | 357 | 340 | 325 | 32.2°

MT1 Consumed sugar(g/L) 2.22 2.26 227 | 225 | 254 | 243 | 245 | 2.34

CMC activity(U/ml) 0.58 0.7 063 | 062|074 | 07 | 0.67 | 0.66°

C.D.W(g/Y) 088 | 089 | 075 | 0.81 | 1.21 | 1.00 | 0.90 | 0.91°

Saccharification (%) 3843 | 40.78 | 4024 [ 394 | 427 | 415 | 420 | 347°

TT2 Consumed sugar(g/L) 2.48 2.49 25 | 251 ] 264] 253 | 253 | 2.36

CMC activity(U/ml) 079 | 084 | 083 | 081 | 0588 | 085 | 0.86 | 0.72°

C.D.W(g/Y) 096 | 098 | 084 | 084|125 1.06 | 1.03 | 0.99°

Saccharification (%) 30.73 | 35.0 | 334 [ 339369 | 36.6 | 36.7 | 40.3°

AT3 Consumed sugar(g/L) 2.42 231 224 | 211|261 | 246 | 2.38 | 2.38°

CMC activity(U/ml) 0.63 | 0.72 069 | 07 | 076 | 0.75 | 0.76 | 0.83"

C.D.W(g/? 10 | 116 | 10 | 11 [ 139 | 131 [ 128 | 117°

Saccharification (%) 36.9 39.2 38.0 | 37.8 | 45.8 | 424 | 417 | 40.7%

KT4 Consumed sugar(g/L) 2.45 2.41 227 [ 216 | 251 | 246 | 2.43 | 2.52°

CMC activity(U/ml) 076 | 081 | 0.78 | 0.78 | 0.94 | 0.87 | 0.86 | 0.84%
C.D.W(g/L) 0.92¢ | 0.86° | 0.84° | 0.8° | 1.2° | 1.1° | 1.0°
5 Saccharification (%) 37.2° | 3559 | 35.2¢ | 33° | 40° | 386" | 38°
2 Con. Sugar (g/L) 076° | 0737 | 0.72° | 0.7° | 0.8 | 08" | 0.8°
CMC activity (U/ml) 24c% | 237 | 232° | 22" | 258 | 2.4° | 2°¢

*Initial total sugar of pretreated cotton stalks = 3.14 (g/L), CMC = carboxy methyl
cellulose, C.D.W. = cell dry weight, Con. sugar = consumed sugar, MT1 = mechanical
treatment, TT2 = thermal treatment, AT3 = acid treatment, KT4 = alkaline treatment, T3 =T.
viride, A4 = A. niger A4, A2 = A. niger A2, An2 = A. niger An2. Values are means of 3
replica, Values in the same column followed by same letter do not significantly different
from each other, according to Duncan's (1955) at 5 % level.
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Table (2): Physicochemical pretreatments of corn cobs for biomass,

consumed sugar and cellulase production by single and mixed

fungi using flasks as a batch culture at 30°C for 7 days.

Tested fungi
@ Single Mixture
2
< o O
b o~ < < g S
E Parameters i 3 < < 3 3 3 2
ol ol =
C.D.W(g/L) 062 | 067 [ 063 | 062 | 1.2 1.0 1.0 | 0.81°
Saccharification (%) | 28.48 | 34.15 | 305 | 30.1 | 36.2 346 | 34.1 | 31.23°
Consumed c
MT1 sugar(g/L) 256 | 258 | 261 | 258 | 2.88 | 276 | 2.79 | 2.67
CMC activity(U/ml) | 059 | 0.74 | 068 | 065 [ 074 [ 073 [ 0.70 | 0.66°
C.D.W(g/L) 074 | 077 | 067 | 067 | 133 | 118 | 1.1 | 0.91°¢
Saccharification (%) | 39.33 | 413 | 40.8 | 39.2 | 436 424 | 399 | 34.64°
Consumed b
TT2 sugar(g/L) 283 | 285 | 287 | 286 | 297 | 292 |294 | 273
CMC activity(U/ml) | 0.81 | 085 | 084 | 0.81 | 09 | 087 | 087 [ 073
C.D.W(g/L) 078 | 083 | 078 | 078 | 145 | 135 | 1.39 | 1.05*"
Saccharification (%) | 333 | 35.9 | 351 | 343 [ 383 | 369 [ 36.0 [ 39.1?°
Consumed b
AT3 sugar(g/L) 282 | 275 | 265 | 253 | 282 | 281 |272| 278
CMC activity(U/ml) | 0.68 | 074 | 0.72 | 071 | 0.79 | 0.76 | 0.77 | 0.84*"
C.D.W(g/L) 093 | 094 [ 089 | 088 | 166 | 14 [137] 115
Saccharification (%) | 42.12 | 42.3 | 39.3 | 4058 | 49.7 | 421 | 418 | 42.8°
kT4 | Consumed 285 | 28 | 277 | 259 | 2093 | 281 | 279 | 2.89°
sugar(g/L)
CMC activity(U/ml) | 0.87 | 087 | 0.81 | 0.83 [ 102 | 0.8 [ 0.88 | 0.88°
C.D.W(g/L) 08 | 076° | 0.7° | 0.72° | 1.4* | 1.2° 1.1%P
§ Saccharification (%) | 36.4° | 36° | 35.6° | 305° | 41° 39° 38.4°
= Con. Sugar (g/L) 27°¢ | 2.7°¢ [ 2.6° | 258° | 2.9° | 2.8P 2.8°P
CMC activity (U/ml) | 0.68° | 0.67° [ 0.67° | 0.67° | 0.8 | 0.7° 0.67°

* |nitial total sugar of pretreated corn cobs = 3.47 (g/L), CMC = carboxy methyl cellulose,

80

C.D.W. = cell dry weight, Con. sugar = consumed sugar, MT1 = mechanical
treatment, TT2 = thermal treatment, AT3 = acid treatment, KT4 = alkaline
treatment, T3 = T. viride, A4 = A. niger A4, A2 = A. niger A2, An2 = A. niger
An2. Values are means of 3 replica, Values in the same column followed by
same letter do not significantly different from each other, according to Duncan's
(1955) at 5 % level

Vol. 41, No.2, March, 2018




Mohamoud, Sara, et al

0

35, MMTL WTTZ WATZ HKT4 0.16
=014
— 30 2
& E 012
25 —
2 Solo
= 20 £ 008
g 15 2
& 10 g -
S S 0.04
5 & g0z
0 0.00
T3 A4 A2 An2  T3RA4 T38A2 T38AnN2 T3 A4 A2 An2  T3RZA4 T3EAZT3&ARZ
— 40 16
< 14
=
a 3 le
K =10
= =
T 20 T oy
[=] =
(¥} FA
5 =
R 5,
g ° .
u
[=]
L I A A2 An2  T38A4 T3EA2 T3An2 T A4 AZ AnZ  TI38A4 TIRAZ TIRANZ
30
0 Ev
Fan .§ 25
g E
240 ° 20
B
T 35U -E 3 15
2 .
=120 a =10
=
10 s 5
0 E 0
T3 Ad A2 An2 T3RA4 T3RAZ T3&An2 E T3 A4 A2 An2 T3&A4 T3RAZT3RAn2
_ oo
z BO
£
K
T 60
=
a
5 40
"
£ 20
-
=
5
1]
=
W

T3 A4 A2 An2  T38A4 T3RA2 T3&ARZ
Fungalisolates

Fig. (2): Biological and enzyme activity parameters of single and mixed tested fungi
on media containing of cotton stalks after mechanical (MT1), thermal
(TT2), acid (AT3) and alkaline (KT4) treatments using flasks as batch
culture for 7 days at 30°C.
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Fig. (3): Biological and enzyme activity parameters of single and mixed tested fungi
on media containing of corn cobs after mechanical (MT1), thermal (TT2),
acid (AT3) and alkaline (KT4) treatments using flasks as batch culture for
7 days at 30°C
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Table (3): Comparative data for biomass, saccharification and cellulase
production by T. viride T3 & A. niger A4 as influence by alkaline

pretreatment of lignocellulosic wastes

Alkaline hydrolyzed agro-industrial wastes

Parameters Biomass Cellulase rBc rBs
Saccharification (g/L) activity
% (U/ml)
Cotton stalks 45.87° 1.39° 0.94° 0.89 0.93
Corn cobs 49.68 1.66° 1.02° 0.88 0.92

* rBs = Correlation coefficient between biomass and sachharification.

rBc = Correlation coefficient between biomass and cellulase.

Values in the same column followed by the same letter do not significantly different
from each other, according to Duncan's (1955) at 5% level.

Therefore, alkali pretreatment has become one of the most promising
methods used to degrade lignin in biomass, decrease the polymerization and
crystallini structure of cellulose and thus to ease the enzymatic hydrolysis
process (Jeya et al., 2009 and Parameswaran et al., 2010). Alkaline
pretreatment is the most effective methods compare with acid (Shuhaida and
Soh, 2016). The alkali pretreatment can result in a sharp increase in
saccharification yields, pretreatment using NaOH is one of the effective pre-
treatments, and could digest the hardwood from 14% to 55% by reducing the
lignin composition from 55% to 20% (Balat, 2011 and Behera et al., 2014).
Also, Hashem et al. (2013) was proved that lignocellulosic biomass could not
be enzymatically saccharified to high yields without a pretreatment, mainly
because the lignin in plant cell walls forms a barrier against enzymatic attack.

In addition, Nathalie et al. (2003) discussed the main effect of sodium

hydroxide pretreatment on lignocellulosic biomass is delignification by
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breaking the ester bonds cross-linking lignin and xylan, thus increasing the
porosity of biomass. Iroba et al. (2013) and Cabrera et al. (2014) also stated
that physicochemical pretreated with NaOH is the most effective method to
break down the lignin.

However, Hashem et al. (2013) reported that non-crystalline and
microcrystal cellulose dissolved in 8-10 % NaOH aqueous solution,
indicating the increase of the electron cloud density, as a result of the
interactions between cellulose chains with NaOH, which led to the rupture of
the intermolecular hydrogen bonds. On that basis, cellulose filaments with
small swelling ratio and low fibrillation nature in water were spun (Sen et al.,
2016).

From the previous results, it could be conducted that pretreatment of
lignocelluloses with NaOH was the best one. Also, corn cobs was better
agricultural waste than cotton stalks for saccarification and cellulase
production by mixed fungal cultures of T. viride T3 & A. niger A4 as
compared to another wastes and another fungi.

So, it could be stated that alkaline pretreatment and mixed culture T.
viride T3 & A. niger A4 were selected for further studies.
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